Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2308955, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38647404

RESUMEN

The adjustable structures and remarkable physicochemical properties of 2D monoelemental materials, such as silicene and germanene, have attracted significant attention in recent years. They can be transformed into silicane (SiH) and germanane (GeH) through covalent functionalization via hydrogen atom termination. However, synthesizing these materials with a scalable and low-cost fabrication process to achieve high-quality 2D SiH and GeH poses challenges. Herein, groundbreaking 2D SiH and GeH materials with varying compositions, specifically Si0.25Ge0.75H, Si0.50Ge0.50H, and Si0.75Ge0.25H, are prepared through a simple and efficient chemical exfoliation of their Zintl phases. These 2D materials offer significant advantages, including their large surface area, high mechanical flexibility, rapid electron mobility, and defect-rich loose-layered structures. Among these compositions, the Si0.50Ge0.50H electrode demonstrates the highest discharge capacity, reaching up to 1059 mAh g-1 after 60 cycles at a current density of 75 mA g-1. A comprehensive ex-situ electrochemical analysis is conducted to investigate the reaction mechanisms of lithiation/delithiation in Si0.50Ge0.50H. Subsequently, an initial assessment of the c-Li15(SixGe1- x)4 phase after lithiation and the a-Si0.50Ge0.50 phase after delithiation is presented. Hence, this study contributes crucial insights into the (de)lithiation reaction mechanisms within germanane-silicane alloys. Such understanding is pivotal for mastering promising materials that amalgamate the finest properties of silicon and germanium.

2.
Adv Sci (Weinh) ; 11(13): e2305797, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38268241

RESUMEN

Chiral CDots (c-CDots) not only inherit those merits from CDots but also exhibit chiral effects in optical, electric, and bio-properties. Therefore, c-CDots have received significant interest from a wide range of research communities including chemistry, physics, biology, and device engineers. They have already made decent progress in terms of synthesis, together with the exploration of their optical properties and applications. In this review, the chiroptical properties and chirality origin in extinction circular dichroism (ECD) and circularly polarized luminescence (CPL) of c-CDots is briefly discussed. Then, the synthetic strategies of c-CDots is summarized, including one-pot synthesis, post-functionalization of CDots with chiral ligands, and assembly of CDots into chiral architectures with soft chiral templates. Afterward, the chiral effects on the applications of c-CDots are elaborated. Research domains such as drug delivery, bio- or chemical sensing, regulation of enzyme-like catalysis, and others are covered. Finally, the perspective on the challenges associated with the synthetic strategies, understanding the origin of chirality, and potential applications is provided. This review not only discusses the latest developments of c-CDots but also helps toward a better understanding of the structure-property relationship along with their respective applications.

3.
Plants (Basel) ; 12(19)2023 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-37836242

RESUMEN

We recently proposed the use of engineered irregularly shaped zinc oxide nanoparticles (ZnO NPs) coated with oleylamine (OAm), as photosynthetic biostimulants, to enhance crop yield. In the current research, we tested newly engineered rod-shaped ZnO nanorods (NRs) coated with oleylamine (ZnO@OAm NRs) regarding their in vivo behavior related to photosynthetic function and reactive oxygen species (ROS) generation in tomato (Lycopersicon esculentum Mill.) plants. ZnO@OAm NRs were produced via solvothermal synthesis. Their physicochemical assessment revealed a crystallite size of 15 nm, an organic coating of 8.7% w/w, a hydrodynamic diameter of 122 nm, and a ζ-potential of -4.8 mV. The chlorophyll content of tomato leaflets after a foliar spray with 15 mg L-1 ZnO@OAm NRs presented a hormetic response, with an increased content 30 min after the spray, which dropped to control levels 90 min after the spray. Simultaneously, 90 min after the spray, the efficiency of the oxygen-evolving complex (OEC) decreased significantly (p < 0.05) compared to control values, with a concomitant increase in ROS generation, a decrease in the maximum efficiency of PSII photochemistry (Fv/Fm), a decrease in the electron transport rate (ETR), and a decrease in the effective quantum yield of PSII photochemistry (ΦPSII), indicating reduced PSII efficiency. The decreased ETR and ΦPSII were due to the reduced efficiency of PSII reaction centers (Fv'/Fm'). There were no alterations in the excess excitation energy at PSII or the fraction of open PSII reaction centers (qp). We discovered that rod-shaped ZnO@OAm NRs reduced PSII photochemistry, in contrast to irregularly shaped ZnO@OAm NPs, which enhanced PSII efficiency. Thus, the shape and organic coating of the nanoparticles play a critical role in the mechanism of their action and their impact on crop yield when they are used in agriculture.

4.
Materials (Basel) ; 16(17)2023 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-37687539

RESUMEN

Zinc oxide nanoparticles (ZnO NPs) have emerged as a prominent tool in agriculture. Since photosynthetic function is a significant measurement of phytotoxicity and an assessment tool prior to large-scale agricultural applications, the impact of engineered irregular-shaped ZnO NPs coated with oleylamine (ZnO@OAm NPs) were tested. The ZnO@OAm NPs (crystalline size 19 nm) were solvothermally prepared in the sole presence of oleylamine (OAm) and evaluated on tomato (Lycopersicon esculentum Mill.) photosystem II (PSII) photochemistry. Foliar-sprayed 15 mg L-1 ZnO@OAm NPs on tomato leaflets increased chlorophyll content that initiated a higher amount of light energy capture, which resulted in about a 20% increased electron transport rate (ETR) and a quantum yield of PSII photochemistry (ΦPSII) at the growth light (GL, 600 µmol photons m-2 s-1). However, the ZnO@OAm NPs caused a malfunction in the oxygen-evolving complex (OEC) of PSII, which resulted in photoinhibition and increased ROS accumulation. The ROS accumulation was due to the decreased photoprotective mechanism of non-photochemical quenching (NPQ) and to the donor-side photoinhibition. Despite ROS accumulation, ZnO@OAm NPs decreased the excess excitation energy of the PSII, indicating improved PSII efficiency. Therefore, synthesized ZnO@OAm NPs can potentially be used as photosynthetic biostimulants for enhancing crop yields after being tested on other plant species.

5.
Nanoscale Adv ; 5(11): 2897-2910, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37260478

RESUMEN

Maximizing the safe removal of hexavalent chromium (Cr6+) from waste streams is an increasing demand due to the environmental, economic and health benefits. The integrated adsorption and bio-reduction method can be applied for the elimination of the highly toxic Cr6+ and its detoxification. This work describes a synthetic method for achieving the best chemical composition of spherical and flower-like manganese ferrite (MnxFe3-xO4) nanostructures (NS) for Cr6+ adsorption. We selected NS with the highest adsorption performance to study its efficiency in the extracellular reduction of Cr6+ into a trivalent state (Cr3+) by Shewanella oneidensis (S. oneidensis) MR-1. MnxFe3-xO4 NS were prepared by a polyol solvothermal synthesis process. They were characterised by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectrometry (XPS), dynamic light scattering (DLS) and Fourier transform-infrared (FTIR) spectroscopy. The elemental composition of MnxFe3-xO4 was evaluated by inductively coupled plasma atomic emission spectroscopy. Our results reveal that the oxidation state of the manganese precursor significantly affects the Cr6+ adsorption efficiency of MnxFe3-xO4 NS. The best adsorption capacity for Cr6+ is 16.8 ± 1.6 mg Cr6+/g by the spherical Mn0.22+Fe2.83+O4 nanoparticles at pH 7, which is 1.4 times higher than that of Mn0.8Fe2.2O4 nanoflowers. This was attributed to the relative excess of divalent manganese in Mn0.22+Fe2.83+O4 based on our XPS analysis. The lethal concentration of Cr6+ for S. oneidensis MR-1 was 60 mg L-1 (determined by flow cytometry). The addition of Mn0.22+Fe2.83+O4 nanoparticles to S. oneidensis MR-1 enhanced the bio-reduction of Cr6+ 2.66 times compared to the presence of the bacteria alone. This work provides a cost-effective method for the removal of Cr6+ with a minimum amount of sludge production.

7.
Small ; 19(42): e2302341, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37337384

RESUMEN

Environmentally friendly energy sources (e.g., hydrogen) require an urgent development targeting to address the problem of energy scarcity. Electrocatalytic water splitting is being explored as a convenient catalytic reaction in this context, and promising amorphous nanomaterials (ANMs) are receiving increasing attention due to their excellent catalytic properties.Oxygen group-based amorphous nanomaterials (O-ANMs) are an important component of the broad family of ANMs due to their unique amorphous structure, large number of defects, and abundant randomly oriented bonds, O-ANMs induce the generation of a larger number of active sites, which favors a better catalytic activity. Meanwhile, amorphous materials can disrupt the inherent features of conventional crystalline materials regarding electron transfer paths, resulting in higher flexibility. O-ANMs mainly include VIA elements such as oxygen, sulfur, selenium, tellurium, and other transition metals, most of which are reported to be free of noble metals and have comparable performance to commercial catalysts Pt/C or IrO2 and RuO2 in electrocatalysis. This review covers the features and reaction mechanism of O-ANMs, the synthesis strategies to prepare O-ANMs, as well as the application of O-ANMs in electrocatalytic water splitting. Last, the challenges and prospective remarks for future development in O-ANMs for electrocatalytic water splitting are concluded.

8.
Plants (Basel) ; 12(5)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36903940

RESUMEN

Inorganic-based nanoparticle formulations of bioactive compounds are a promising nanoscale application that allow agrochemicals to be entrapped and/or encapsulated, enabling gradual and targeted delivery of their active ingredients. In this context, hydrophobic ZnO@OAm nanorods (NRs) were firstly synthesized and characterized via physicochemical techniques and then encapsulated within the biodegradable and biocompatible sodium dodecyl sulfate (SDS), either separately (ZnO NCs) or in combination with geraniol in the effective ratios of 1:1 (ZnOGer1 NCs), 1:2 (ZnOGer2 NCs), and 1:3 (ZnOGer2 NCs), respectively. The mean hydrodynamic size, polydispersity index (PDI), and ζ-potential of the nanocapsules were determined at different pH values. The efficiency of encapsulation (EE, %) and loading capacity (LC, %) of NCs were also determined. Pharmacokinetics of ZnOGer1 NCs and ZnOGer2 NCs showed a sustainable release profile of geraniol over 96 h and a higher stability at 25 ± 0.5 °C rather than at 35 ± 0.5 °C. ZnOGer1 NCs, ZnOGer2 NCs and ZnO NCs were evaluated in vitro against B. cinerea, and EC50 values were calculated at 176 µg/mL, 150 µg/mL, and > 500 µg/mL, respectively. Subsequently, ZnOGer1 NCs and ZnOGer2 NCs were tested by foliar application on B. cinerea-inoculated tomato and cucumber plants, showing a significant reduction of disease severity. The foliar application of both NCs resulted in more effective inhibition of the pathogen in the infected cucumber plants as compared to the treatment with the chemical fungicide Luna Sensation SC. In contrast, tomato plants treated with ZnOGer2 NCs demonstrated a better inhibition of the disease as compared to the treatment with ZnOGer1 NCs and Luna. None of the treatments caused phytotoxic effects. These results support the potential for the use of the specific NCs as plant protection agents against B. cinerea in agriculture as an effective alternative to synthetic fungicides.

9.
ACS Nano ; 16(12): 19789-19809, 2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36454684

RESUMEN

Chiral Au nanorods (c-Au NRs) with diverse architectures constitute an interesting nanospecies in the field of chiral nanophotonics. The numerous possible plasmonic behaviors of Au NRs can be coupled with chirality to initiate, tune, and amplify their chiroptical response. Interdisciplinary technologies have boosted the development of fabrication and applications of c-Au NRs. Herein, we have focused on the role of chirality in c-Au NRs which helps to manipulate the light-matter interaction in nontraditional ways. A broad overview on the chirality origin, chirality transfer, chiroptical activities, artificially synthetic methodologies, and circularly polarized applications of c-Au NRs will be summarized and discussed. A deeper understanding of light-matter interaction in c-Au NRs will help to manipulate the chirality at the nanoscale, reveal the natural evolution process taking place, and set up a series of circularly polarized applications.

10.
NanoImpact ; 28: 100430, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36206943

RESUMEN

In the current study, coated copper nanoparticles with polyethylene glycol 8000 (Cu@PEG NPs) and copper-doped zinc oxide nanoparticles with diethylene glycol (Cu-doped ZnO@DEG NPs) have been synthesized via solvothermal and microwave-assisted process, physicochemical characterized, and studied as nano-fungicides and nano-nematicides. Spheroidal Cu-doped ZnO@DEG NPs and urchin-like Cu@PEG NPs have been isolated with average crystallite sizes of 12 and 21 nm, respectively. The Cu doping (11.3 wt%) in ZnO lattice (88.7 wt%) was investigated by Rietveld refinement analysis and confirmed by X-ray Diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS). The Cu-doped ZnO@DEG and Cu@PEG NPs revealed a growth inhibition of fungi Botrytis cinerea (B. cinerea) and Sclerotinia sclerotiorum (S. sclerotiorum) and nematode paralysis of Meloidogyne javanica in a dose-dependent manner. Cu-doped ZnO@DEG NPs were more effective against M. javanica (EC50 = 2.60 µg/mL) than the Cu@PEG NPs (EC50 = 25 µg/mL). In contrast, the antifungal activity was approximately similar for both NPs, with EC50 values at 310 and 327 µg/mL against B. cinerea, respectively, and 260 and 278 µg/mL against S. sclerotiorum, respectively. Lettuce (Lactuca sativa) plants were inoculated with S. sclerotiorum or M. javanica and sprayed with either Cu-doped ZnO@DEG NPs or Cu@PEG NPs. The antifungal effect was evaluated based on a disease index (DI), and nematicidal activity was assessed based on the total number of galls and nematode females per root gram. NPs successfully inhibited the growth of both pathogens without causing phytotoxicity on lettuce. The DI were significantly decreased as compared to the positive control (DI = 5.2), estimated equal to 1.7, 2.9 and 2.5 for Cu@PEG NPs, Cu-doped ZnO@DEG NPs and the chemical control (KOCIDE 2000), respectively. The reduction in galling and population of M. javanica ranged from 39.32% to 32.29%, statistically like chemical control. The treatment of lettuce plants with Cu-doped ZnO@DEG NPs increased the leaf net photosynthetic value at 4.60 and 6.66 µmol CO2-2 s-1 in plants inoculated with S. sclerotiorum and M. javanica, respectively, as compared to the control (3.00 µmol CO2-2 s-1). The antioxidant capacity of NPs treated lettuce plants was evaluated as 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity in leaf extracts. Plants inoculated with S. sclerotiorum and sprayed with Cu-doped ZnO@DEG and Cu@PEG NPs, exhibited a 34.22% and 32.70% increase in antioxidant capacity, respectively, higher than the control. Similarly, an increase in antioxidant capacity was measured (39.49 and 37.36%) in lettuce inoculated with M. javanica and treated with Cu-doped ZnO@DEG and Cu@PEG NPs, respectively. Moreover, an increase of phenolic compounds in lettuce leaf tissue treated with NPs was measured as compared to the control. Overall, foliar applied Cu and Cu-doped ZnO NPs could be a promising tool to control phytopathogenic fungi and nematodes contributing to sustainability of agri-food sector.


Asunto(s)
Dióxido de Carbono , Cobre , Cobre/farmacología
11.
ACS Appl Mater Interfaces ; 14(41): 46386-46400, 2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36206403

RESUMEN

Even though WS2 nanotubes (NTs-WS2) have great potential as anode materials for lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) thanks to their unusual layered structure, their conductivity and cycling stability are far from satisfactory. To tackle these issues, carbon-coated WS2 (NTs-WS2@C) nanocomposites were prepared through a facile synthesis method that involved precipitating a carbon precursor (20% sucrose) on WS2 nanotubes, followed by annealing treatment under an argon environment. Thanks to the presence of highly conductive and mechanically robust carbon on the outer surface, NTs-WS2@C nanocomposites show improved electrochemical performance compared with bare NTs-WS2. After 60 cycles at 80 mA g-1 current density, the cells display high capacities of 305 mAh g-1 in LIBs and 152 mAh g-1 in SIBs, respectively. As the current density increases to 600 mA g-1, it provides specific capacities of 209 and 115 mAh g-1, correspondingly. The enhanced electrochemical performance in LIBs and SIBs is primarily attributed to the synergistic effects of the tubular architecture of WS2, carbon network and stable nanocomposite structure, which can effectively constrain volume variation during the metal ions intercalation/deintercalation processes.

12.
Nanoscale Horiz ; 7(9): 941-1015, 2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-35770698

RESUMEN

A variety of colloidal chemical approaches has been developed in the last few decades for the controlled synthesis of nanostructured materials in either water or organic solvents. Besides the precursors, the solvents, reducing agents, and the choice of surfactants are crucial for tuning the composition, morphology and other properties of the resulting nanoparticles. The ligands employed include thiols, amines, carboxylic acids, phosphines and phosphine oxides. Generally, adding a single ligand to the reaction mixture is not always adequate to yield the desired features. In this review, we discuss in detail the role of the oleic acid/oleylamine ligand pair in the chemical synthesis of nanoparticles. The combined use of these ligands belonging to two different categories of molecules aims to control the size and shape of nanoparticles and prevent their aggregation, not only during their synthesis but also after their dispersion in a carrier solvent. We show how the different binding strengths of these two molecules and their distinct binding modes on specific facets affect the reaction kinetics toward the production of nanostructures with tailored characteristics. Additional functions, such as the reducing function, are also noted, especially for oleylamine. Sometimes, the carboxylic acid will react with the alkylamine to form an acid-base complex, which may serve as a binary capping agent and reductant; however, its reducing capacity may range from lower to much lower than that of oleylamine. The types of nanoparticles synthesized in the simultaneous presence of oleic acid and oleylamine and discussed herein include metal oxides, metal chalcogenides, metals, bimetallic structures, perovskites, upconversion particles and rare earth-based materials. Diverse morphologies, ranging from spherical nanoparticles to anisotropic, core-shell and hetero-structured configurations are presented. Finally, the relation between tuning the resulting surface and volume nanoparticle properties and the relevant applications is highlighted.


Asunto(s)
Nanopartículas , Ácido Oléico , Aminas/química , Ligandos , Nanopartículas/química , Ácido Oléico/química , Óxidos , Solventes/química
13.
Inorg Chem ; 61(14): 5524-5538, 2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35344664

RESUMEN

Nitrogen reduction to ammonia under ambient conditions has received important attention, in which high-performing catalysts are sought. A new, facile, and seedless solvothermal method based on a high-temperature reduction route has been developed in this work for the production of bismuthene nanostructures with excellent performance in the electrocatalytic nitrogen reduction reaction (NRR). Different reaction conditions were tested, such as the type of solvent, surfactant, reducing agent, reaction temperature, and time, as well as bismuth precursor source, resulting in distinct particle morphologies. Two-dimensional sheet-like structures and small particles displayed very high electrocatalytic activity, attributed to the abundance of tips, edges, and high surface area. NRR experiments resulted in an ammonia yield of 571 ± 0.1 µg h-1 cm-2 with a respective Faradaic efficiency of 7.94 ± 0.2% vs Ag/AgCl. The easy implementation of the synthetic reaction to produce Bi nanostructures facilitates its potential scale up to larger production yields.

14.
Molecules ; 27(1)2022 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-35011514

RESUMEN

Pterygium is a progressive disease of the human eye arising from sub-conjunctival tissue and extending onto the cornea. Due to its invasive growth, pterygium can reach the pupil compromising visual function. Currently available medical treatments have limited success in suppressing efficiently the disease. Previous studies have demonstrated that curcumin, polyphenol isolated from the rhizome of Curcuma longa, induces apoptosis of human pterygium fibroblasts in a dose- and time-dependent manner showing promising activity in the treatment of this ophthalmic disease. However, this molecule is not very soluble in water in either neutral or acidic pH and is only slightly more soluble in alkaline conditions, while its dissolving in organic solvents drastically reduces its potential use for biomedical applications. A nanoformulation of curcumin stabilized silver nanoparticles (Cur-AgNPs) seems an effective strategy to increase the bioavailability of curcumin without inducing toxic effects. In fact, silver nitrates have been used safely for the treatment of many ophthalmic conditions and diseases for a long time and the concentration of AgNPs in this formulation is quite low. The synthesis of this new compound was achieved through a modified Bettini's method adapted to improve the quality of the product intended for human use. Indeed, the pH of the reaction was changed to 9, the temperature of the reaction was increased from 90 °C to 100 °C and after the synthesis the Cur-AgNPs were dispersed in Borax buffer using a dialysis step to improve the biocompatibility of the formulation. This new compound will be able to deliver both components (curcumin and silver) at the same time to the affected tissue, representing an alternative and a more sophisticated strategy for the treatment of human pterygium. Further in vitro and in vivo assays will be required to validate this formulation.


Asunto(s)
Curcumina , Queratinocitos/metabolismo , Nanopartículas del Metal , Pterigion , Plata , Curcumina/química , Curcumina/farmacología , Humanos , Nanopartículas del Metal/química , Nanopartículas del Metal/uso terapéutico , Pterigion/tratamiento farmacológico , Pterigion/metabolismo , Plata/química , Plata/farmacología
15.
Molecules ; 28(1)2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36615234

RESUMEN

Magnetic metal-organic frameworks (MMOFs) are gaining increased attention as emerging adsorbents/water remediation agents. Herein, a facile development of novel MMOFs comprised of coated ferrite nanoparticles (MNPs) and UiO-66 metal-organic framework is reported. In specific, coated Co- and Zn-doped ferrite magnetic nanoparticles were synthesized as building block while the metal-organic framework was grown in the presence of MNPs via a semi-self-assembly approach. The utilization of coated MNPs facilitated the conjugation and stands as a novel strategy for fabricating MMOFs with increased stability and an explicit structure. MMOFs were isolated with 13-25 nm crystallites sizes, 244-332 m2/g specific surface area (SSA) and 22-42 emu/g saturation magnetization values. Establishing the UiO-66 framework via the reported semi-self-assembly resulted in roughly 70% reduction in both magnetic properties and SSA, compared with the initial MNPs building blocks and UiO-66 framework, respectively. Nonetheless, the remaining 30% of the magnetization and SSA was adequate for successful and sufficient adsorption of two different pesticides, 2,4-Dichlorophenoxyacetic acid (2,4-D) and 2,4,5-Trichlorophenoxyacetic acid (2,4,5-T), while the recovery with a commercial magnet and reuse were also found to be effective. Adsorption and kinetic studies for all three MMOFs and both pesticides were performed, and data were fitted to Langmuir-Freundlich isotherm models.


Asunto(s)
Estructuras Metalorgánicas , Nanocompuestos , Plaguicidas , Estructuras Metalorgánicas/química , Cinética , Adsorción , Fenómenos Magnéticos
16.
Materials (Basel) ; 14(24)2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34947215

RESUMEN

Inorganic nanoparticles (INPs) have dynamically emerged in plant protection. The uptake of INPs by plants mostly depends on the size, chemical composition, morphology, and the type of coating on their surface. Herein, hybrid ensembles of glycol-coated bimetallic CuZn and ZnO nanoparticles (NPs) have been solvothermally synthesized in the presence of DEG and PEG, physicochemically characterized, and tested as nano-fungicides. Particularly, nanoflowers (NFs) of CuZn@DEG and ZnO@PEG have been isolated with crystallite sizes 40 and 15 nm, respectively. Organic coating DEG and PEG (23% and 63%, respectively) was found to protect the NFs formation effectively. The CuZn@DEG and ZnO@PEG NFs revealed a growth inhibition of phytopathogenic fungi Botrytis cinerea and Sclerotinia sclerotiorum in a dose-dependent manner with CuZn@DEG NFs being more efficient against both fungi with EC50 values of 418 and 311 µg/mL respectively. Lettuce (Lactuca sativa) plants inoculated with S. sclerotiorum were treated with the NFs, and their antifungal effect was evaluated based on a disease index. Plants sprayed with ZnO@PEG NFs showed a relatively higher net photosynthetic (4.70 µmol CO2 m-2s-1) and quantum yield rate (0.72) than with CuZn@DEG NFs (3.00 µmol CO2 m-2s-1 and 0.68). Furthermore, the penetration of Alizarin Red S-labeled NFs in plants was investigated. The translocation from leaves to roots through the stem was evident, while ZnO@PEG NFs were mainly trapped on the leaves. In all cases, no phytotoxicity was observed in the lettuce plants after treatment with the NFs.

17.
Nanomaterials (Basel) ; 11(12)2021 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-34947718

RESUMEN

Copper selenide-sulfide nanostructures were synthesized using metal-organic chemical routes in the presence of Cu- and Se-precursors as well as S-containing compounds. Our goal was first to examine if the initial Cu/Se 1:1 molar proportion in the starting reagents would always lead to equiatomic composition in the final product, depending on other synthesis parameters which affect the reagents reactivity. Such reaction conditions were the types of precursors, surfactants and other reagents, as well as the synthesis temperature. The use of 'hot-injection' processes was avoided, focusing on 'non-injection' ones; that is, only heat-up protocols were employed, which have the advantage of simple operation and scalability. All reagents were mixed at room temperature followed by further heating to a selected high temperature. It was found that for samples with particles of bigger size and anisotropic shape the CuSe composition was favored, whereas particles with smaller size and spherical shape possessed a Cu2-xSe phase, especially when no sulfur was present. Apart from elemental Se, Al2Se3 was used as an efficient selenium source for the first time for the acquisition of copper selenide nanostructures. The use of dodecanethiol in the presence of trioctylphosphine and elemental Se promoted the incorporation of sulfur in the materials crystal lattice, leading to Cu-Se-S compositions. A variety of techniques were used to characterize the formed nanomaterials such as XRD, TEM, HRTEM, STEM-EDX, AFM and UV-Vis-NIR. Promising results, especially for thin anisotropic nanoplates for use as electrocatalysts in nitrogen reduction reaction (NRR), were obtained.

18.
ACS Appl Mater Interfaces ; 13(38): 45870-45880, 2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34541850

RESUMEN

Magnetically induced hyperthermia has reached a milestone in medical nanoscience and in phase III clinical trials for cancer treatment. As it relies on the heat generated by magnetic nanoparticles (NPs) when exposed to an external alternating magnetic field, the heating ability of these NPs is of paramount importance, so is their synthesis. We present a simple and fast method to produce iron oxide nanostructures with excellent heating ability that are colloidally stable in water. A polyol process yielded biocompatible single core nanoparticles and nanoflowers. The effect of parameters such as the precursor concentration, polyol molecular weight as well as reaction time was studied, aiming to produce NPs with the highest possible heating rates. Polyacrylic acid facilitated the formation of excellent nanoheating agents iron oxide nanoflowers (IONFs) within 30 min. The progressive increase of the size of the NFs through applying a seeded growth approach resulted in outstanding enhancement of their heating efficiency with intrinsic loss parameter up to 8.49 nH m2 kgFe-1. The colloidal stability of the NFs was maintained when transferring to an aqueous solution via a simple ligand exchange protocol, replacing polyol ligands with biocompatible sodium tripolyphosphate to secure the IONPs long-term colloidal stabilization.


Asunto(s)
Calefacción , Nanopartículas Magnéticas de Óxido de Hierro/química , Resinas Acrílicas/química , Ligandos , Fenómenos Magnéticos , Tamaño de la Partícula , Polietilenglicoles/química , Polifosfatos/química
19.
Adv Sci (Weinh) ; 8(12): 2004951, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34194936

RESUMEN

Composite materials are made from two or more constituent materials with distinct physical or chemical properties that, when combined, produce a material with characteristics which are at least to some degree different from its individual components. Nanocomposite materials are composed of different materials of which at least one has nanoscale dimensions. Common types of nanocomposites consist of a combination of two different elements, with a nanoparticle that is linked to, or surrounded by, another organic or inorganic material, for example in a core-shell or heterostructure configuration. A general family of nanoparticle composites concerns the coating of a nanoscale material by a polymer, SiO2 or carbon. Other materials, such as graphene or graphene oxide (GO), are used as supports forming composites when nanoscale materials are deposited onto them. In this Review we focus on magnetic nanocomposites, describing their synthetic methods, physical properties and applications. Several types of nanocomposites are presented, according to their composition, morphology or surface functionalization. Their applications are largely due to the synergistic effects that appear thanks to the co-existence of two different materials and to their interface, resulting in properties often better than those of their single-phase components. Applications discussed concern magnetically separable catalysts, water treatment, diagnostics-sensing and biomedicine.


Asunto(s)
Materiales Biocompatibles , Nanopartículas de Magnetita , Nanocompuestos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA